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Efficient Computation of the Periodic Green’s
Function in Layered Dielectric Media

Raed M. Shubair, Student Member, IEEE and Y. L. Chow, Member, IEEE

Abstract— This paper presents a novel technique for the ef-
ficient computation of the periodic Green’s function in lay-
ered dielectric media. The technique is based upon expanding
the spectral Green’s function into a finite number of inverse-
transformable complex exponential functions. This enables the
use of Poisson’s summation formula to express the periodic
Green’s function as a combined sum of spectral terms and
spatial terms each set of which is rapidly convergent. Numerical
results are obtained for the ‘“on-plane” case, in which the direct
summation of the series converges extremely slowly. Using the
accelerated summation formula of this paper, a computation time
reduction of 160 fold is obtained. The proposed technique is useful
as it can be applied to a wide class of problems where periodic
structures are to be modeled.

I. INTRODUCTION

HE ELECTROMAGNETIC modeling of periodic struc-

tures in layered dielectric media involves the formation
of an integral equation which has as its kernel a Green’s func-
tion series that converges very slowly. In using the moment
method to determine the radiation or scattering from a periodic
array, repeated evaluations of the Green’s function series are
required to fill in the impedance matrix of the structure being
modeled. The slow convergence of the series would, therefore,
result in a considerable amount of computation time. Several
papers have recently proposed series acceleration techniques
to enhance the convergence of the periodic Green’s function
using the spectral- and spatial-formulations in conjunction with
Kummar’s, Poisson’s, and Shank’s transformations [1]-[6].
However, the techniques proposed in these papers have been
applied only to the free-space periodic Green’s function. It
is therefore desirable to develop a technique which acceler-
ates the convergence of the layered media periodic Green’s
function. The contribution of this paper is to provides such
a technique which can apply to a wide class of problems
involving general layered media structures.

The technique is a combination of two: the complex images
[7], [8] for the layered media in the vertical (z) direction
and the series accelerating technique of Singh er al. [3].
The combination is then improved in convergence using
Poisson’s summation formula. The complex image technique
uses Prony’s method [9] to approximate the spectral Green’s
function by a set of complex exponentials which are analyt-
ically inverse Fourier-transformable. The functional form of
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these spectral exponentials enables them to be transformed
to the spatial domain in closed-form through the use of
Sommerfeld identity [10]. The spatial solution is interpreted
as the response due to the source plus a few complex images
of complex amplitudes and locations [7], [8]. It is found that
the asymptotic behavior of the spectral exponentials causes the
slow convergence of the Green’s function series. To overcome
this problem, this paper develops a generalized form from
the accelerating technique of the free-space periodic Green’s
function [3]. It starts by first subtracting out the asymptotic
behavior of the spectral domain and then making use of
Poisson’s summation formula to add it back in the spatial
domain. The efficient complex image technique {7], [8] is
then used to express the added spatial contribution in a simple
closed form. The final solution of the periodic Green’s function
would, therefore, consist of a combination of a spectral series
and a spatial series, each of which is rapidly convergent. This
makes the overall mixed spectral-spatial summation of the
periodic Green’s function also rapidly convergent.

As an application of the technique presented in this paper,
numerical experiments have been conducted to compute the
periodic Green’s function of a two-dimensional array of point
dipole sources printed on a microstrip substrate of arbitrary
thickness. The results show the number of terms required for
the mixed spectral-spatial summation to converge, for different
values of the substrate thickness and relative permittivity.

II. THEORY

In determining the radiation at an observation point (z,y)
from a two-dimensional infinite array of phase shifted point
sources located at (2, y') in each unit cell as shown in Fig. 1,
evaluations of the different components of the vecfor and
scalar potentials are needed. Each Green’s function component
of these potentials can be expressed in terms of a spectral sum
with the general form

o0 o0
m=—oo n=—0o0

e dkam(z—2") | —ikyn(y—y") )

with the discrete values of kg, and k,, given by

2mm

2mn
kmm=k;+—a-, kyn:k;"l__

b

a and b represent the z- and y-periodicities of the structure, as
shown in Fig. 1. k;, and kj, are wavenumbers associated with
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Geometry of an infinite array of point dipole sources above a general
layered media structure.

Fig. 1.
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Fig. 2. A point dipole source above a layered media structure.

the phase shifted plane wave. They are given by
k. = kosin 6; cos ¢,

where (6;, ¢;) are the spherical coordinate angles of an incom-
ing or outgoing wave and kg is the free-space wavenumber.
In (1) émn represents the spectral Green’s function of an
infinitesimal dipole point source at (z’,y’, 2’) above a general
layered media structure as shown in Fig. 2. It can be written
in the followihg form of superposition of plane waves

1

o T [e—szo(z 2") + Re—szo(Z-l'Z )] )
] 20"

where

\/7 - (k + k2n)7 k;(z) > k?cm + k?/n
)
-J\ﬁc k) — kS, KD < RZ, KD,

R in the above expression of Gmn represents the spectral
reflection coefficient due to the layered media, as shown
in Fig. 2. Its expression can be obtained from the specific
problem under consideration. For example, the Appendix has
the expression of R for the microstrip substrate problem. |

It is well known that the spectral series summation in (1)
is slowly convergent, especially for the “on-plane” case where
z = z'. To overcome the slow convergence problem, a series
accelerating technique proposed by Singh et al. [3] for the free-
space periodic Green’s function is implemented. The success

k; = ko sin 6;sin ¢; (3) v

in generalizing such a technique to the layered media periodic
Green’s function lies in obtaining a closed-form expression for
the spatial Green’s function. This is accomplished using the
theory of complex images presented as follows.

A. The Complex Images

We approximate the spectral reflection coefficient R by a
short series of exponential functions [7], [8]:

N
iB k.,
R=Y" Ageitiko,
=1

where A; and B; are complex coefficients obtained for a
chosen N by the application of Prony’s method [9]. The
approximation in (6) of the spectral reflection coefficient R
for different layered media structures was investigated here as
well as in [7]. It was found that in all cases taking IV in the
range 3 ~ 5 is sufficient to yield an accuracy of better than
0.1%. From (6) into (4), G, becomes

= 1
e jZkzO

N <5 (6)

e‘jkzo(z—zl) + ZAie—jkzo(z-i-z'—Bi) . (D
i=1

The advantage of the short series approximation of I as

given in (6) becomes now evident as the inverse Fourier-

transformation of Gmn in (7) yields a closed-form spatial

expression for G,:

. .
Gmnz———+;Az~—47—T? (8)
where 1o = (x—2)?+ @y —y)2+(z—2)2 and 1; =
V(@ =22+ (y —y')% + (z + 2/ ~ B;)2. Gp is interpreted
as the response due to the source and a set of “N” complex

1mages of complex amplitudes (A;’s) and complex locations
(=2 + B;).

B. The Series Accelerating Technique of Singh et al. [3]

The rate of convergence of the Green’s function series G, in
(1) is governed by the asymptotic behavior of Gan. To derive
the expression of this asymptotic behavior we introduce an
attenuation constant v such that

k.o = _j \/ kazcm + kgn - k(Q)

i) (R + K+ 02) = (BB +02). )

Clearly from (2) as (m,n) — 00 both (kym,kyn) — 0.
Therefore, we can take k.o — —j4/k%, + k2, +u?. By
replacing this asymptotic value of k into (7), the'asymptotic
behavior of Gy, is obtained as

A 1 S ey ] e
ngn = > > 5 [ zm Cyn ( )
2,/ kzm + kg +u? |

N
+ 3 Ao VAT =B
i
i=1

10

¢ » 18 a smooth function that decays very slowly in the
spectral domain. The property of slow convergence of G, of
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(1) is contained in this asymptotic G;‘nn. To overcome this
problem, G¢,,. is subtracted from and added to (1) yielding

1 [e'S] [e%s) . v
Gp = 55 Z Z (Gmn - Gmn)
m=—o0 n=—00
. 6_ ik zm(ﬁ—m,) e“jkyn(y_yl)

LYY an,

m---<>0 n=-0o0

. e—jkyn(y—y')

Jkzm(z—2")

(1n

The first series in (11) becomes now rapidly convergent
because the asymptotic behavior of slow convergence is sub-
tracted out.

C. The Improvement on the Convergence

The slow convergence of the asymptotic behavior, the
second series in (11), is improved by converting it into the
spatial domain. Here, the Poisson’s summation formula is
used:

(e}

Y. Y. f(mand)

m=-—00 N=—00

ab Z z F<27rm 27m)

m=—oQ n=—0oC

12)

where f(z,y) and F'(k;,k,) are a two-dimensional Fourier
transform pair. They are related by the following equations:

Flhk) = [ [ flopeteridady

flz,y) = 21%/ / F(kw’ky)e+J(kz:c+kyy)d]€$ dk,
—00 v —00
(14)

(13)

Therefore, in (11) the second spectral sum can be replaced
using (12) by an equivalent spatial sum:

1 oo oo
@ Z Z Gtrznn
Mm=—00 N=—00

>, D G

m=—00 Nn=-—00

e—jkrm(w—m') . e“jkyn(!!_y/)

21T s 1.
. ejkxma . ejkynb

15

where the spatial G 2 n is the inverse Fourier transformation
of the corresponding spectral G’fnn. The exponential form (10)
of the spectral G¢,,, which is obtained using the complex
image theory, allows the use of Sommerfeld identity [10] in
performing the inverse Fourier operation analytically to obtain
the following closed-form expression for G2 :

__uR’Vﬂn
Grun = Jrgg T Z
where

Ry™ = \/(z — &' —ma)? + (y — y — nb)® + (z — 2')?

_uRmn

Rmn’ N <5

(16)

R™ =\/(z —2' —ma)2 + (y — ¢ —nb)2 + (2 + 2/ — B;)?
17)

The spatial sum, the series on the right hand side of (15),
expressed in terms of the closed-form expression (16), is
rapidly convergent not only because of the small “/N” but also
because of the exponential decay of exp(—uRJ*™). Physically,
G4, represents the response at an observation point (z, ¥y, z)
due to a dipole point source located at 2’ and a set of
“N” complex images having complex amplitudes (A4,’s) and
complex locations (—z'+ B,). Both the point source and the set
of complex images are located within the (mth, nth) unit cell
and are radiating in a homogeneous medium with an imaginary
wavenumber k = —ju. According to [3], the specific value of
the attenuation constant u is determined numerically so that
the spatial sum on the right hand side of (15) converges most
rapidly.

Now, the final form of the periodic Green’s function is
obtained by substituting (15) in (11):

Gr=gp 2 3 (Gna= G

g ikem(z—') |

+ Y G,

m=—oon=—0o0

e‘Jkyn(y_yl)

3 k3
. e]kzma . e]kynb

18)

Therefore, the slowly convergent series of (1) has been suc-
cessfully replaced by a combination of two rapidly convergent
series as given in (18). The first seriecs in (18) converges
rapidly because two functions are being subtracted out that
are asymptotically equal as m and n increase. The second
series in (18) converges rapidly because the spatial functions
involved decay exponentially as m and n increase.

III. NUMERICAL RESULTS

As a numerical example, we used the direct sum formula
of (1) and the accelerated sum formula of (18) to evaluate the
Green’s function series of a two-dimensional (x,y) periodic
array of ¥ -directed point dipole sources printed on a grounded
substrate of thickness A and relative permittivity €.. The
Green’s function example being evaluated here is G, which
is the scalar potential of a point charge associated with a z-
directed point dipole source. Its spectral-domain expression for
the microstrip substrate problem is given in the Appendix.

Calculations of the periodic Green’s function are made for
the “on-plane” case where the original series of (1) has the
slowest convergence, i.e., we choose z = 2’ = 0. Without any
loss of generality. a source point is placed at ' = ¢’ = 0
and the observation point is taken to be at different locations
p where p = \/22 + y? with z = y, i.e., the observation point
moves along the diagonal of a unit cell. Figs. 3 and 4 show the
total number of terms in the accelerated formula (18) versus
selected points of the normalized transverse distance p/Ag.
Here A is the free-space wavelength and p varies along the
diagonal of a unit cell with dimensions ¢ = b = 1.1Ag. The
results in these figures are obtained for different values of the
substrate parameters ¢, and h.

The infinite spectral and spatial summations in (18) have
been truncated when a convergence criterion e, defined in [3]
is satisfied. Here we choose e, = 5 x 10~%, which is found
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Fig. 3. Number of terms vs. the normalized transverse distance p/Xq for
different values of the substrate thickness h. (e, = 2.55, f = 30 GHe,
a=b=11x,k; =k, =0).
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Fig. 4. Number of terms vs. the normalized transverse distance p/Aq for
different values of the substrate thickness h.(er = 9.8, f = 30 GHz,
a=0b=11x,k; =k, =0.

sufficient to ensure convergence. It is seen from Figs. 3 and 4
that the accelerated formula requires 78 x 78 terms at most
to converge; whereas a straightforward summation of the un-
accelerated series of (1) takes over one million (1000 x 1000)
terms to satisfy the same value of the convergence criterion
ec.. This clearly proves the significant reduction achieved in
computation time by utilizing the accelerated formula (18) for
the evaluation of the periodic Green’s function.

In Fig. 5 we have plotted the magnitude of the periodic
Green’s function evaluated using the accelerated series of
(18) versus the normalized transverse distance p/Xg for two
different values of €. = 2.55 and 9.8. Again the source point
is located at ' = ¢’ = 0 and the observation point is taken at
different locations along the diagonal. The transverse distance
p varies within the dimensions of two unit cells. It is obvious
from this figure that the Green’s function, which represents
the charge scalar potential, is symmetrical within one unit
cell as well as from one unit cell to another, i.e., around
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Fig. 5. Magnitude of the periodic Green’s function G, for the charge scalar
potential calculated using the accelerated formula (18) vs. the normalized
transverse distance p/Xo. (f = 30 GHz, a = b = 1.1Ao, k% = k%, = 0).

p = 1.55 = /2(1.1)¢). This indicates that the accelerated
summation formula (18) is not only rapidly convergent but
also accurate. It may be interesting to note that in both periodic
sums of the accelerated and the unaccelerated series, the
surface wave poles of the layered media are included in the
spectral function Gy, without extraction.

It is observed in Fig. 5, along the diagonal line p of the
cell, the scalar potential periodic Green’s function has a strong
coloumb field at the sources: p = 0, 1.56\g and 3.12)\q. This
behavior is represented in the second sum of the spatial G2, in
(18). Between the sources, the Green’s function is dominated
by the surface wave represented by the first sum of the spectral
Gy in (18). The surface wave increases in magnitude with
increased dielectric €.

Finally, it may be pointed out that the choice of the
attenuation constant v has a more pronounced effect on the
convergence of the spatial sum of G2, and the spectral sum
of (Gmn — G%,,,), but it has only a minor effect on the total
of the two sums in (18). That is approximately: in varying w,
an increase in convergence of the spatial sum, is compensated
by the decrease in convergence of the spectral sum, and vice
versa. The choice of a specific value for u therefore is not very
critical. As a result, this paper chooses the value of u = 7 /a,
similar to that in [3].

IV. CONCLUSIONS

This paper presented a new technique for the efficient
computation of the layered media periodic Green’s function.
The technique uses the complex image theory and Poisson’s
summation formula to obtain a highly convergent combined
spectral-spatial representation of the Green’s function series.
In comparison with other techniques which are applicable to
the free-space periodic Green’s function, our technique can be
easily used for periodic Green’s functions in general layered
media. As indicated in [7], the generation of the complex
images in this general multilayered case is not more difficult



502 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 41, NO. 3, MARCH 1993

than the generation of complex images for the single layered
microstrip example of the last section. This means that the
developed technique is of potential importance as it can be
applied to a wide class of problems where the modeling of
periodic structures is required.

APPENDIX

A Green’s function example used for Gonp 0 (4) is the
scalar potential of a point charge associated with a & -directed
dipole point source located above a microstrip substrate of
thickness h and relative permittivity €,. The Green’s function
expression in the spectral domain is given by the following
form of plane wave summations [11]:

~ 1

Gy = ——

! J .2kz0 [
where Rig and R, take into account the effects of the
microstrip substrate and are given by

ek (:=2") 4 (Rpp + Ry)e™7*0(+2)] (A1)

TlTbE + e—]2k21h

Rap= -0 Fe2
1 + TITOEG—JZkZIh

(A2)

R, =
2k2,(1 — €,)(1 — e~ 74kz0h)
(ka1 +k20) (ka1 + €rkag) (1 + rEFe—i2kaih) (1 - TMe—i2k1h)
(A3)

i and " are simply the reflection coefficients of the TE
and TM waves at the dielectric-air interface. They are given by

™ _ kzl - 6'rkz(:!

TE _ kzl - kzO r
10 —
ka1 +erkzo

= A4
"o k21 + ko a4)

with

Ko+ k2=k3, kI +k=cki and

2 1.2 2
k 5 = kx4 ky.
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