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Efficient Computation of the Periodic Green’s
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Abstract— This paper presents a novel technique for the ef-

ficient computation of the periodic Green’s function in lay-

ered dielectric media. The technique is based upon expanding

the spectral Green’s function into a finite number of inverse-

transformable complex exponential functions. This enables the

use of Poisson’s summation formula to express the periodic
Green’s function as a combined sum of spectral terms and
spatial terms each set of which is rapidly convergent. Numerical

results are obtained for the “on-plane” case, in which the direct
summation of the series converges extremely slowly. Using the
accelerated summation formula of this paper, a computation time
reduction of 160 fold is obtained. The proposed technique is useful

as it can be applied to a wide class of problems where periodic

structures are to be modeled.

I. INTRODUCTION

T HE ELECTROMAGNETIC modeling of periodic struc-

tures in layered dielectric media involves the formation

of an integral equation which has as its kernel a Green’s func-

tion series that converges very slowly. In using the moment

method to determine the radiation or scattering from a periodic

array, repeated evaluations of the Green’s function series are

required to fill in the impedance matrix of the structure being

modeled. The slow convergence of the series would, therefore,

result in a considerable amount of computation time. Several

papers have recently proposed series acceleration techniques

to enhance the convergence of the periodic Green’s function

using the spectral- and spatial-formulations in conjunction with

Kummar’s, Poisson’s, and Shank’s transformations [1]–[6].

However, the techniques proposed in these papers have been

applied only to the free-space periodic Green’s function. It

is therefore desirable to develop a technique which acceler-

ates the convergence of the layered media periodic Green’s

function. The contribution of this paper is to provides such

a technique which can apply to a wide class of problems

involving general layered media structures.

The technique is a combination of two: the complex images

[7], [8] for the layered media in the vertical (z) direction
and the series accelerating technique of Singh et al. [3].

The combination is then improved in convergence using

Poisson’s summation formula. The complex image technique

uses Prony’s method [9] to approximate the spectral Green’s

function by a set of complex exponential which are analyt-

ically inverse Fourier-transformable. The functional form of
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these spectral exponential enables them to be transformed

to the spatial domain in closed-form through the use of

Sommerfeld identity [10]. The spatial solution is interpreted

as the response due to the source plus a few complex images

of complex amplitudes and locations [7], [8]. It is found that

the asymptotic behavior of the spectral exponential causes the

slow convergence of the Green’s function series. To overcome

this problem, this paper develops a generalized form from

the accelerating technique of the free-space periodic Green’s

function [3]. It starts by first subtracting out the asymptotic

behavior of the spectral domain and then making use of

Poisson’s summation formula to add it back in the spatial

domain. The efficient complex image technique [7], [8] is

then used to express the added spatial contribution in a simple

closed form. The final solution of the periodic Green’s function

would, therefore, consist of a combination of a spectral series

and a spatial series, each of which is rapidly convergent. This

makes the overall mixed spectral-spatial summation of the

periodic Green’s function also rapidly convergent.

As an application of the technique presented in this paper,

numerical experiments have been conducted to compute the

periodic Green’s function of a two-dimensional array of point

dipole sources printed on a microstrip substrate of arbitrary

thickness. The results show the number of terms required for

the mixed spectral-spatial summation to converge, for different

values of the substrate thickness and relative permittivity.

II. THEORY

In determining the radiation at an observation point (~, y)

from a two-dimensional infinite array of phase sh~ted point

sources located at (z’, y’) in each unit cell as shown in Fig. 1,

evaluations of the different components of the vector and

scalar potentials are needed. Each Green’s function component

of these potentials can be expressed in terms of a spectral sum

with the general form

cc

G, = $ ~ ~ Gmn(kzm, k,n)
m=—w n=—cc

. ~–jk=m(z–z’) . ~-jkun(y–y’)
(1)

with the discrete values of k . . . and kv. given by

a and b represent the x- and y-periodicities of the structure, as

shown in Fig. 1. k: and k; are wavenumbers associated with
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Fig. 1. Geometry of an infinite array of point dipole sources above a general
layered media structure.
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Fig. 2. A point dipole source above a layered media structure.

the phase shifted plane wave. They are given by

k: = k. sin Oi cos ~i, k: = k. sin 0<sin & (3)

where (Oi, g$) are the spherical coordinate angles of an incom-

ing or outgoing wave and k. is the free-space wavenumber.

In (1) G~m represents the spectral Green’s function of an

infinitesimal dipole point source at (x’, y’, z’) above a general

layered media structure as shown in Fig. 2. It can be written

in the following form of superposition of plane waves

Gmn =
k[e-k(z-z’) + Re-hO(~+~’)] (~)

R in the above expression of G~n represents the spectral

reflection coefficient due to the layered media, as shown

in Fig. 2. Its expression can be obtained from the specific

problem under consideration. For example, the Appendix has

the expression of R for the microstrip substrate problem.

It is well known that the spectral series summation in (1)

is slowly convergent, especially for the “on-plane” case where
~ = ~r. To overcome the S1OW convergence problem, a series

accelerating technique proposed by Singh et al. [3] for the free-

space periodic Green’s function is implemented. The success

in generalizing such a technique to the layered media periodic

Green’s function lies in obtaining a closed-form expression for

the spatial Green’s function. This is accomplished using the

theory of complex images presented as follows.

A. The Complex Images

We approximate the spectral reflection coefficient R by a

short series of exponential functions [7], [8]:

(6)
i=l

where Ai and l?i are complex coefficients obtained for a

chosen N by the application of Prony’s method [9]. The

approximation in (6) of the spectral reflection coefficient R

for different layered media structures was investigated here as

well as in [7]. It was found that in all cases taking N in the

range 3 N 5 is sufficient to yield an accuracy of better than

0.1 %. From (6) into (4), Gmn becomes

[

N

G –~
e–jkzo(z–z’) + x Aie–jk.r)(,+#–B 1‘).(7)

‘n – jzkzo i=l

The advantage of the short series approximation of R as

given in (6) becomes now evident as the inverse Fourier-

tmnsformation of G~~ in (7) yields a closed-form spatial
expression for Gmn:

G –?+~Ai~
‘n – 47i-ro

(8)
%‘i=l

where rO = /(z – Z’)2 + (y – y’)2 + (z – ,Z’)2 and ri =

~(z - X’)2 + (y - g’)2 + (,z + .z’ - B~. Gmn is interpreted

as the response due to the source and a set of “N” complex

images of complex amplitudes (Ai’s) and complex locaticms

(-~’ + Bi).

B. The Series Accelerating Technique of Singh et al. [3]

The rate of convergence of the Green’s function series GP in

(1) is governed by the asymptotic behavior of Gn.. To derive

the expression of this asymptotic behavior we introduce an

attenuation constant u such that

k,o = –j~k~m -t k;. – k;

~
= –j (k;m +kvn +U ) – (k: +U2). (9)

Clearly from (2) as (m, n) ~ cc both (k~~, ky~) ~ CO.

Therefore, we can take k,o A
~ ‘y

–j k.m + kYn + u

replacing this asymptotic value of kZ into (7), the’ asymptotic

behavior of Gmn is obtained as

,-, --,“n’2*[e-ik’~+k’n
N+~Aie-~ k~m+k;n+w2( ~+~’-B.) 1 (lo)

i=l

@& is a smooth function that decays very slowly in the

spectral domain. The property of slow convergence of Gl, of



500 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 41, NO. 3, MARCH 1993

(1) is contained in this asymptotic G&n. To overcome this

problem, G&n is subtracted from and added to (1) yielding

mm

G,= $ ~ ~ (G.. - &mn)
‘m. -c$2 n,. -ca

. ~–jkmm(z–z’) . ~–jkg. (y–.7/’)

.Cc cc

The first series in (11) becomes now rapidly convergent

because the asymptotic behavior of slow convergence is sub-

tracted out.

C. The Improvement on the Convergence

The slow convergence of the asymptotic behavior, the

second series in (11), is improved by converting it into the

spatial domain. Here, the Poisson’s summation formula is

used:
COm

Tn.-cc ?l,=-m

where ~(z, g) and F(kz, ku ) are a two-dimensional Fourier

transform pair. They are related by the following equations:

coca

“(k., kg) =
/!

~(z, y)e-’(k’’+y)dxdx dy (13)
—m —cc

cum

//

F(kZ, kv)e+~(kZZ+k~Y)dkZ dkvf(z, y) = +2 _@ _@

(14)

Therefore, in (11) the second spectral sum can be replaced

using (12) by an equivalent spatial sum:

~ E F ‘~n “e-’k’m(’-”’)“e-’k’n(y-y’)~.—~n.—m

cow

= Z E ‘:. “e’k;ma“e’k:nb (15)

where the spatial @mn is the inverse Fourier transformation

of the corresponding spectral G&n. The exponential form (10)

of the spectral @~m, which is obtained using the complex
image theory, allows the use of Sommerfeld identity [1 O] in

performing the inverse Fourier operation analytically to obtain

the following closed-form expression for G&n:

where

R~” = ~($ -z’ - ma)’+ (y - y’ - nb)2 + (z - z’)’

R~n = ~(~ – Z’ - ma)’ + (y - ~’ – ~b)2 + (Z + Z’ - Bi)2

(17)

The spatial sum, the series on the right hand side of (15),

expressed in terms of the closed-form expression (16), is

rapidly convergent not only because of the small “N” but also

because of the exponential decay of exp(–uR~n). Physically,

G&n represents the response at an observation point (x, y, z)

due to a dipole point source located at z’ and a set of

“N” complex images having complex amplitudes (A, ‘s) and

complex locations (– ,z’+I?, ). Both the point source and the set

of complex images are located within the (mth, nth) unit cell

and are radiating in a homogeneous medium with an imaginary

wavenumber k = –ju. According to [3], the specific value of

the attenuation constant u is determined numerically so that

the spatial sum on the right hand side of (15) converges most

rapidly.

Now, the final form of the periodic Green’s function is

obtained by substituting (15) in (11):

—.
m,. -m n.—cc

. e–jk. m(z–a’) . ~–jkvn(y–y’)

cow

+ ~ ~ G;n . ,Ik:ma . ,Ik;nb (18)
In. -lx n.—cc

Therefore, the slowly convergent series of (1) has been suc-

cessfully replaced by a combination of two rapidly convergent

series as given in (18). The first series in (18) converges

rapidly because two functions are being subtracted out that

are asymptotically equal as m and n increase. The second

series in (18) converges rapidly because the spatial functions

involved decay exponentially as m and n increase.

III. NUMERICAL RESULTS

As a numerical example, we used the direct sum formula

of (1) and the accelerated sum formula of (18) to evaluate the

Green’s function series of a two-dimensional (z, g) periodic

array of Z -directed point dipole sources printed on a grounded

substrate of thickness h and relative permittivity c,. The

Green’s function example being evaluated here is Gg which

is the scalar potential of a point charge associated with a i-

directed point dipole source. Its spectral-domain expression for

the microstrip substrate problem is given in the Appendix.

Calculations of the periodic Green’s function are made for

the “on-plane” case where the original series of (1) has the

slowest convergence, i.e., we choose z = z’ = O. Without any

loss of generality, a source point is placed at z’ = y’ = O
and the observation point is taken to be at different locations

p where p = ~= with x = y, i.e., the observation point

moves along the diagonal of a unit cell. Figs. 3 and 4 show the

total number of terms in the accelerated formula (18) versus

selected points of the normalized transverse distance p/A..

Here A. is the free-space wavelength and p varies along the

diagonal of a unit cell with dimensions a = b = 1. lAO. The

results in these figures are obtained for different values of the

substrate parameters Cr and h.

The infinite spectral and spatial summations in (18) have

been truncated when a convergence criterion e. defined in [3]

is satisfied. Here we choose eC = 5 x 10–6, which is found
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Fig. 3. Number of terms vs. the normalized transverse distance p/A. for

different values of the substrate tlickness h. (e, == 2.55, ~ = 30 GHz,
a == b = I.lAo, k: = k; = O).

Fig. 5. Magnitude of the periodic Green’s function GP for the charge scalar
potential calculated using the accelerated formula (18) vs. the normalized

transverse distance p/Ao. (f = 30 GHz, a = b = l.l AO, k; = k; = O).
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Fig. 4. Number of terms vs. the normalized transverse distance p/A. for
different vatues of the substrate thickness h. (e, = 9.8, ~ = 30 GHz,

a= b=l.l~o, k; =1$ =0.

sufficient to ensure convergence. It is seen from Figs. 3 and 4

that the accelerated formula requires 78 x 78 terms at most

to converge; whereas a straightforward summation of the un-

accelerated series of (1) takes over one million (1000 x 1000)
terms to satisfy the same value of the convergence criterion

eC. This clearly proves the significant reduction achieved in

computation time by utilizing the accelerated formula (18) for

the evaluation of the periodic Green’s function.

In Fig. 5 we have plotted the magnitude of the periodic

Green’s function evaluated using the accelerated series of

(18) versus the normalized transverse distance p/~O for two

different values of CT= 2.55 and 9.8. Again the source point
is located at x’ = y’ = O and the observation point is taken at

different locations along the diagonal. The transverse distance

p varies within the dimensions of two unit cells. It is obvious

from this figure that the Green’s function, which represents

the charge scalar potential, is symmetrical within one unit

cell as well as from one unit cell to another, i.e., around

p = 1.55 = ~(1. 1~0). This indicates that the accelerated

summation formula (18) is not only rapidly convergent but

also accurate. It may be interesting to note that in both periodic

sums of the accelerated and the unaccelerated series, the

surface wave poles of the layered media are included in the

spectral function Gm~ without extraction.

It is observed in Fig. 5, along the diagonal line p of the

cell, the scalar potential periodic Green’s function has a strong

coloumb field at the sources: p = O, 1.56A0 and 3.12A0. This

behavior is represented in the second sum of the spatial G& in

(18). Between the sources, the Green’s function is dominated

by the surface wave represented by the first sum of the spectral

Gnn in (18). The surface wave increases in magnitude with
increased dielectric .+.

Finally, it may be pointed out that the choice of the

attenuation constant u has a more pronounced effect on the

convergence of the spatial sum of G&n and the spectral stun

of (G~n – G~n), but it has only a minor effect on the total

of the two sums in (18). That is approximately: in varying u,

an increase in convergence of the spatial sum, is compensated

by the decrease in convergence of the spectral sum, and vice

versa. The choice of a specific value for u therefore is not very

critical. As a result, this paper chooses the value of u = 7r/a,

similar to that in [3].

IV. CONCLUSIONS

This paper presented a new technique for the efficient

computation of the layered media periodic Green’s function.

The technique uses the complex image theory and Poisson’s

summation formula to obtain a highly convergent combined
spectral-spatial representation of the Green’s function series.

In comparison with other techniques which are applicable to

the free-space periodic Green’s function, our technique can be

easily used for periodic Green’s functions in general layered

media. As indicated in [7], the generation of the complex

images in this general multilayered case is not more difficult
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than the generation of complex images for the single layered

microstrip example of the last section. This means that the

developed technique is of potential importance as it can be

applied to a wide class of problems where the modeling of

periodic strtrctures is required.

APPENDIX

A Green’s function example used for Gmn in (4) is the

scalar potential of a point charge associated with a Z -directed

dipole point source located above a microstrip substrate of

thickness h and relative permittivity c.. The Green’s function

expression in the spectral domain is given by the following

form of plane wave summations [1 1]:

1=, [e-mzd-z’)
Gq=- + (~TE + ~q)e-~kzo(z+z’)] (Al)

where RTtz and R~ take into account the effects of the

microstrip substrate and are given by

(A2)

R~ =

2k~O(l – 6.)(1 – e–~4kz0k)

(k.l+kzo)(k.l + 6rkZo)(1 + ’10 e‘E ‘~2~zlh)(l–r~oMe-~2~~1~)

(A3)

r~oE and TIO‘M are simply the reflection coefficients of the TE

and TM waves at the dielectric-air interface. They are given by

/%.1– /kzo
T;OE= TM _ ~zl – %~zo

k.1 + kzo
?-lo —

kzl + +kzo
(A4)

with
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